Einstein Metrics on Complex Surfaces
نویسنده
چکیده
Suppose M a compact manifold which admits an Einstein metric g which is Kähler with respect to some complex structure J . Is every other Einstein metric h on M also Kähler-Einstein? If the complex dimension of (M,J) is ≥ 3, the answer is generally no; for example, CP3 admits both the FubiniStudy metric, which is Kähler-Einstein, and a non-Kähler Einstein metric [2] obtained by appropriately squashing the fibers of the twistor projection CP3 → S. Iterated Cartesian products with CP1 then provide counterexamples in all higher dimensions. However, if M is a 4-manifold, so that (M,J) is a compact complex surface, there is reason to hope that the anwer to the above question might be yes. Indeed, Hitchin [12] was able to answer the question in the affirmative for complex surfaces which admit Ricci-flat Kähler metrics; his argument hinges on the fact that any 4-dimensional Einstein manifold satisfies
منابع مشابه
On quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملKähler Metrics of Constant Scalar Curvature on Hirzebruch Surfaces
It is shown that a Hirzebruch surface admits a Kähler metric (possibly indefinite) of constant scalar curvature if and only if its degree equals zero. There have been many extensive studies for positive-definite Kähler metrics of constant scalar curvature, especially, Kähler Einstein metrics and scalar-flat Kähler metrics, on existence, uniqueness, obstructions, and relationships with other not...
متن کاملA ug 2 00 2 New Einstein Metrics on 8 # ( S 2 × S 3 )
Recently, the authors [BG2] introduced a new method for showing the existence of Sasakian-Einstein metrics on compact simply connected 5-dimensional spin manifolds. This method was based on work of Demailly and Kollár [DK] who gave sufficient algebraic conditions on log del Pezzo surfaces anticanonically embedded in weighted projective spaces to guarantee the existence of a Kähler-Einstein orbi...
متن کاملFour-manifolds without Einstein Metrics
It is shown that there are infinitely many compact simply connected smooth 4-manifolds which do not admit Einstein metrics, but nevertheless satisfy the strict Hitchin-Thorpe inequality 2χ > 3|τ |. The examples in question arise as non-minimal complex algebraic surfaces of general type, and the method of proof stems from Seiberg-Witten theory.
متن کامل